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An investigation of the turbulent flow structure over a progressive water wave, as 
well as the structure of the wave-induced flow field in a transformed wave-following 
frame, is reported. Experimental results are given for a free-stream velocity of 2.4 m s-l 
over a 1 Hz mechanically generated deep-water wave. The velocity components were 
measured with a cross hot-film probe oscillating in a transformed wave-following 
frame. The amplitude and phase of the wave-induced velocity components are de- 
duced by correlation to the generated water wave. The mean flow tends to follow the 
wave form so that the water wave should not be regarded as surface roughness. The 
mean velocity profile is basically log-linear and is similar to that over a smooth plate, 
because ripples riding on the waves do not produce sufficient roughness to interfere 
with the wind field. The wave-induced motion in the free stream is irrotational; but, 
in the boundary layer, it has strong shear behaviour related to the wave-associated 
Reynolds stress. The shear stress production as well as the energy production from 
the mean flow is concentrated near the interface. A phase jump of 180” in the wave- 
induced turbulent Reynolds stresses in the middle of the boundary layer was observed. 
The relationships between the induced turbulent Reynolds stresses and the induced 
velocities are of an eddy-viscosity type. 

1. Introduction 
The theory of water-wave generation by the wind was advanced significantly by 

Phillips (1957) and Miles (1957). Phillips’ theory can be regarded as a discussion of an 
ensemble of surface disturbances excited by turbulent pressure fluctuations. I ts  
mechanism is based on resonance, the resulting wave growth rate is linear, and the 
theory appears most applicable to the very early growth or the initiation period for 
the water waves. Miles’ theory describes the coupling between surface waves and the 
mean air flow. The growth mechanism depends mainly on the feedback from the wave- 
induced air-flow perturbations to the surface waves. His mechanism bears a strong 
resemblance to classical work on hydrodynamic stability, and the resulting wave 
growth rate is exponential. Hence, Miles’ mechanism is more effective than Phillips’ 
mechanism in transferring energy from wind to waves. It was anticipated that Miles’ 

t Now at Fluid Mechanics Department, TRA’/DSSG, Onr  Space Park, Redondo Reach, 
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mechanism would provide an explanation for the major portion of energy transfer; 
unfortunately, the measurements of Snyder & Cox (1966), Barnett & Wilkerson (1967) 
and Bole & Hsu (1969) showed measured growth rates which were up t o  an order of 
magnitude greater than those predicted from Miles’ theory. 

Although Miles acknowledged the possible significance of the induced turbulent 
Reynolds stresses and the ambiguity of the interface boundary conditions caused by 
using a fixed co-ordinate system in his 1957 paper, he based his calculations primarily 
on inviscid quasi-laminar assumptions and neglected the viscous and the turbulence 
effects. The difficulty of the interface boundary conditions was overcome by Miles 
(1959) and by Benjamin (1959) through the use of transformed co-ordinate systems 
in which the boundary conditions could be evaluated directly a t  the interface. 

The significance of the induced turbulent Reynolds stresses was implicit in the 
failure of the quasi-laminar model to predict the major portion of wave growth, and 
was also demonstrated by Longuet-Higgins (1969) following the concepts given by 
Stewart (1967). Longuet-Higgins (1969) showed that an oscillating shear stress a t  the 
interface could be as important as the wave-induced pressure in transferring the 
energy to the waves. Kendall(l970) demonstrated experimentally the strong modula- 
tion of turbulent structure caused by progressive surface waves on a flexible, but solid 
wall and the significance of direct energy transfer to the waves as they were acted 
upon by the induced turbulent Reynolds stresses. 

When the induced turbulent Reynolds stresses are retained in the linearized per- 
turbation equations, the closure problem impedes any further theoretical predictions. 
Closure relations were obtained by several authors using the existing closure theories 
in turbulence. Among them are Miles (1967)) Long (1971), Davis (1970, 1972), Town- 
send (1972), Saeger & Reynolds (1971), Norris & Reynolds (1975), Gent & Taylor 
(1976) and Gent (1977). The predictions of their models were compared with the 
measurements of Stewart (1970)) Kendall (1970), Dobson (1971)) Elliott (1972)) 
Hasselmann et al. (1973), Snyder (1974) and others. However, the comparisons led 
to no conclusive results in regard to wave-generation theory. Accordingly, the prob- 
lem of how the wave is generated by wind requires further investigation. The main 
reasons for this are two-fold. 

First, there exists a wide inconsistency among the measured results. I n  comparison 
of wave growth rates, Snyder’s (1974) data agreed with that of Miles’ prediction, 
Elliott’s (1972) were twice that of Miles’, and Dobson’s (1971) were one order in 
magnitude greater than Miles’ predictions. Because these three sets of results were 
all resolved from pressure-field measurement above the ocean waves, Snyder (1974, 
p. 526) suggested that one possibility for this discrepancy was ‘At least one, and per- 
haps all three, of the measurements are wrong’. Snyder also found no explanation 
that could account for the difference between his data and those of Dobson. Because 
Dobson’s wave growth rates were consistent with those obtained from the direct 
observations of the wave field by Snyder & Cox (1966)t  and by Barnett & Wilkerson 
(1967), the degree of importance of the role of the wave-induced pressure in wave 
generation is still unknown. Dobson & Elliott (1978) report that recent field pressure 
measurements indicate that Dobson’s (1971) value of the growth rate factor p is too 

t This agreement is now considered surprising because Dobson measured energy input from 
the wind only, while Snyder & Cox measured energy input from all sources, includmg nonlinear 
w n  VP wa vr m t wart  ion s , 
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high by a factor of 3 and that Elliott’s measurements are closest to correct. The 
confusion is compounded by the work of JONSWAP (Hasselmann et al. 1973), where 
the major wave growth could be explained by a nonlinear theory of wave-wave 
interaction. 

Second, there exists no acceptable data set for the wave-induced turbulent Reynolds 
stresses as a basis for closure modelling. All the closure models have been based on 
ad hoc or phenomenological assumptions from existing turbulent closure theory. 
Whether the closure for a turbulent flow in a solid wall channel can be applied equally 
to an interface flow, where there are progressive water waves, is still questionable. 
This, together with the incompleteness of our knowledge of turbulence, has substan- 
tially limited the applicability of the models. To gain a clear insight to the closure 
modelling for the perturbation field, a complete and direct measurement of the air 
flow field including the induced turbulent Reynolds stresses was needed. 

By reviewing the methods of approach in the works cited above, one finds that they 
can be categorized into two types. One is the fixed-frame measurement or analysis 
and the other is the wave-following frame measurement or analysis. The data of 
Dobson were collected by a wave-following buoy and the analyses of Miles (1959), 
Benjamin (1959), Norris & Reynolds (1975) and Gent & Taylor (1976) were performed 
in transformed co-ordinate systems; hence, they are wave-following frame approaches. 
The others use the fixed-frame approach. The differences in physical meanings for 
flow quantities obtained in these two frames are subtle and seem not to  have been 
discussed properly. The wave-following data have even sometimes been used in- 
discriminately to check the theoretical results derived in the fixed frame and vice 
versa. Gent & Taylor (1976, p. 124) stated ‘Similar features are found if we plot our 
results in this way (in the sense of fixed frame?) but merely serve to illustrate how 
difficult i t  is to interpret measurements made at a fixed height compared with those 
from wave-following instruments.’ We feel that identifying the differences between 
flow quantities in the two frames is important if one wishes to obtain a clearer picture 
of the interface flow structure. Thus, we focus on these differences in this study. 

In  the present investigation, the characteristics of air flow over a 1 Hz mechanically- 
generated water wave in the Stanford Wind, Water-Wave Research Facility were 
obtained by hot-film probe measurements of the air flow and interface characteristics 
were obtained by wave-height gauge measurements of the water surface. The hot-film 
probe was mounted on a wave-follower device operating in a transformed co-ordinate 
system which resembles the one used by Norris & Reynolds (1975). I n  this paper we 
attempt to give a clear picture of the physical meaning of quantities obtained in the 
wave-following frame. The advantages of using a transformed frame over a fixed frame 
are thus revealed. I n  particular the transformed frame facilitates the interpretation 
of the laboratory data. These data include mean and wave perturbation flow fields 
together with the induced turbulent Reynolds stresses. 

The structure of our text is as follows. Section 2 contains the appropriate averaging 
and decomposition techniques, the transformed wave-following co-ordinate system, 
and the resulting equations of motion. A brief description of the experimental apparatus 
and data analysis procedure is in 3 3.  I n  3 4 the experimental results are presented, 
while in 5 5 the implications of the results are discussed with a focus on the mean flow 

t Prrsrnt authors’ intcrprctntion 
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structure, comparison of fixed and transformed frame results, and the momentum 
and energy transfer. Finally, $ 6  offers a summary of our conclusions. 

2. Theoretical aspects of wave perturbations 

The time average of a flow quantity g(x, t )  is defined conventionally as 

2. I .  Averaging and decomposition 

The notation G is used when g represents a single variable such as u, v and p ;  g is then 
used for a product quantity such as U L U ; .  When g contains periodic oscillations as are 
considered in this study, a conditional average of g, called the 'phase average' and 
denoted by (g), is defined by 

- 

where r is the period of the organized oscillation. The organized wave component of 
g, denoted by J ,  is defined by 

g = (g)-g. (2.3) 

An arbitrary random signal g can then be represented as 

g(x, t )  = $ax) + g"(x, t )  + g'(x, t )  (2.4) 

where g' is the fluctuation around the phase average; g' is usually regarded as the 
background turbulence. The properties of the time and the phase averages can be 
found in Hussain & Reynolds (1970). 

I n  (2.  I )  and (2.2) the position x has to be specified during the course of the averaging 
processes. When the flow is described in an inertial fixed frame, x = (x, y, z )  is a fixed 
physical position. On the other hand, a co-ordinate system, x = (x*, y*,x*), may be 
prescribed in which the actual physical position changes with time during averaging 
although the co-ordinates (x*, y*, z*)  are constant. Accordingly, the values g, ( 9 )  and 
@ must depend on which of the co-ordinate systems is used. 

2.2.  Transformed wave-following co-ordinate system 
I n  this study, we consider a turbulent channel flow of air over a small-amplitude 
progressive surface water wave i j  with an amplitude a and a period 7. Here, by small 
amplitude, we mean the wave slope ka is small ( 5  0.1). An injinitesimal wave is re- 
ferred to then as the limiting case where the wave amplitude approaches zero with k 
fixed. The fixed frame (2, y, z )  which is the reference for (x*, y*, z*) ,  is chosen such that 
x is in the direction of the wind and the wave propagation, y is in the vertical direction 
measured upward from the mean water level, and z is in the lateral (transverse) direc- 
tion in accordance with a right-handed system. 

For y < a, a time-averaged quantity g(x, y, z )  for the air flow does not exist in a 
useful form because the fixed position (x, y, z )  is sometimes in the water and sometimes 
in the air, depending on the wave motion; hence, the determination of @(x, y, z )  from 
(2 .3)  is not possible. As a result, the wave perturbation equations which describe the 
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wave-induced air motion, in the fixed frame, are not valid when y < a unless one can 
create a useful description for g(x, y, x )  in this region (see Phillips 1977, p. 118). 

One way to resolve the problem is to apply a traditional perturbation scheme; 
however, this requires the surface water wave to be infinitesimal. The boundary 
conditions for 6 ( x ,  y, t )  and E(x, y, t )  are obtained a t  y = 0 by extrapolation from 
y = q. The flow region becomes then y 0 and g can be defined uniquely. It is well 
known that this procedure leads to ambiguity because its solution does not describe 
the flow variation with phase near the interface accurately and cannot be tested 
directly by experiment. Under what conditions the perturbation scheme and the 
extrapolation are valid is an interesting subject and deserves further discussion. 

Another way to resolve the interface problem is to transform the entire problem 
to a new co-ordinate system such that both the interface and the upper boundary of 
the flow are fixed in the new co-ordinates. The use of a co-ordinate transformation 
enables us to describe completely, not only the entire flow region, but also the interface 
boundary condition. Hence, there is less ambiguity. I n  addition, closure models con- 
structed in the transformed frame are based on flow properties, such as eddy viscosity, 
mixing length, etc., determined relative to the instantaneous water surface rather than 
the mean water level. 

Co-ordinate transformations for interface flow problems can be categorized into two 
types. The first type uses a curvilinear orthogonal co-ordinate system and transforms 
the co-ordinate system and the flow field variables so that the velocity components are 
aligned with the axes of the new co-ordinate system, i.e. 'curvilinear orthogonal' 
velocities are matched to the curvilinear orthogonal co-ordinate system (Miles 1959; 
Benjamin 1959; Gent & Taylor 1976; Gent 1977). This alignment can simplify the 
theoretical analysis; however, a great disadvantage arises relative to experiments 
because it is a very difficult task to move a probe so as to obtain, for example, velocity 
components aligned with the axes of the new co-ordinate system and a t  a constant 
value of the spatial co-ordinates (say x*, y*, x * ) .  If one does not meet the second 
criteria, data are quite impossible to interpret. Thus, the theoretical works using this 
type of co-ordinate usually remain experimentally untested. The second type of 
approach transforms only the co-ordinate system, but not the flow, so that the flow 
system is regarded as the Cartesian velocity field described in a curvilinear co-ordinate 
system (Norris & Reynolds 1975). In  such a system, probes can be carried quite easily 
at constant (x*, y*, z * )  locations. 

I n  the wave-generation problem, the simplest co-ordinate transformation of the 
second type which meets our needs is one which contains only vertical translation, 
namely 

t = t * ,  x = x*, y = Y * + f ( Y * ) $ ,  2 = z* (2.5a, b,  c, d )  

where 

r" = a cos (kx" - wt"). (2.6) 

It follows that an experimental probe need only be oscillated vertically to lie always at  
(x*, y*, z * )  = constant points. The transformation between (x, y, z )  and (x*, y*, x * )  is 
one to one i f f  (y*) is monotonic, but is not orthogonal. Any function which gives 
f(0) = 1 and decreases monotonically to zero a t  the upper boundary of the flow will 

F L M  105 4 
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do. To maintain the spirit of and to relate our transformation to the transformations 
of the first type noted above, f (y*) is chosen to be 

sinh (kH - ky*) 
= sinh ( k H )  

Here, y = y* = H corresponds to the roof of the laboratory wind-wave channel. 
According to the vertical transformation, ( 2 . 5 ~ )  surfaces y* = constant are stream- 
lines of an inviscid flow above a progressive wave without wind (as implied by 
Benjamin 1959); ( 2 . 5 ~ )  matches Benjamin’s transformation when H + co. The co- 
ordinate system (x*, y*, x * ,  t*) given by (2.5)-(2.7) is only slightly different from that 
used by Norris & Reynolds (1975). 

2.3. Governing equations in the transformed co-ordinate system 
An initial examination of an application of a transformation similar to (2.5) was made 
by Norris & Reynolds (1975). However, their co-ordinate transformation was applied 
after the averaged equations had been obtained in (x, y, z, t )  and after the closure 
relations for the wave-induced turbulent Reynolds stresses had been imposed. Some 
important features of the flow are lost in such an approach for the wind-wave case. 

In  our analysis, the full unaveraged continuity and Navier-Stokes equations are 
expressed first in the (x*, y*, x * ,  t*)  system by application of the chain rule for partial 
derivatives. The resulting equations are averaged at  fixed values of (x*, y*, z* )  accord- 
ing to (2.1)-(2.3). Then, the mean flow equations and the wave perturbation equations 
in (x*, y*, x * ,  t*)  can be found through the basic procedure used in a fixed-frame ana- 
lysis. We assume that the flow is fully developedt and that the wave-induced flow 
is two-dimensional (G, G)  and a function of x*, y* and t* only. The small-amplitude 
wave assumption ensures that .iii = O(kq)  so that linearization of the wave perturbation 
equations is justified [i.e., terms of O(k?7j)2 and higher are neglected]. The mean free- 
stream velocity U, and the boundary-layer thickness S are used for normalization.? 

The resulting mean flow equations are (see 8 2.1 for notation and conventions) 

-- +- ----‘v‘ = 0, 
ax* a p  ay* a ( I  Reay* -1 

ap a II -- = - ( v v ) ,  
ay* ay* 

and, if phase averages are taken before time averages, the differences between phase- 
averaged and time-avemged equations are the wave perturbation equations, viz. 

Continuity equation: 

(2.10) 

t Our experiment indicates the flow is almost fully developed at  the data-taking station; 
hence, the fully developed assumption is a reasonable approximation. For an almost fully de- 
veloped flow, the boundary-layer thickness 13 is better than the height H as a flow length scale to 
non-dimensionalize the variables. As a result if it is necessary to let H --f co, our analysis should 
still be adequate. 
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x-momentum equation: 

--f--+U as aq au --f--  au 
at* at*ay* (;:* Z*g) +a@ 

y -m omen tum equation : 

ag aa apl2 aq a I, a?,, af a - 
-+u-+--f--(uv)+-----(V’v’) at* ax* ax* ax*ay* ay* ay*%y* 

Here Re = U,6/v is the Reynolds number and 
- 

‘JX*, y* , t * )  = (+;) -u;u; (2.13) 

are the wave-induced turbulent Reynolds stresses. Also the mean profile U = U(y*) 
so that the mean flow is presumed to ‘follow’ the interface. 

The interface boundary conditions for Q and 5 can now be specified. The no slip 
condition implies that a t  the interface the air particles have no motion relative to the 
water, which is assumed to be moving (approximately) with the combined velocity 
caused by the circular-orbits of deep-water wave motion and by the drift current. 
Accordingly, we have, to  first order (Phillips 1977, p. 95), . 

where c is the wave celerity and U, is the surface drift velocity (which by definition is 
the time-average of U at  y* = 0). 

Equations (2.10)-(2.12) are similar to those used by Norris & Reynolds (1975), but 
with some differences in detail. We emphasize that (a) the mean and the wave-induced 
flow quantities are those measured and decomposed in the transformed wave-following 
frame and (b)  in reaching (2.10)-(2.12) we require only ka to be small. This is less re- 
strictive than the limit in a fixed-frame analysis and a typical turbulent flow, whose 
diffusive layer is considerably thinner than the wave amplitude, can be treated in our 
analysis. [For a detailed discussion on this see Benjamin (1959), p. 168.1 

The terms with fj in equations (2.10), (2.11) and (2.12) are inhomogeneous terms 
because they are known if the mean flow and the surface wave fields are prescribed. 
It is easy to show from control volume analysis that the inhomogeneous terms are 
produced by the horizontal flow crossing the upper and lower boundaries (which are 
a t  constant y*) of the control volume. The inhomogeneous terms are the consequence 
of using the non-orthogonal co-ordinate system (x*, y*, t*) which is not aligned with 

4-2 
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the Cartesian flow quantities such as ui and uz. These inhomogeneous terms can be 
eliminated from (2.10)-(2.12) by using the following relations, 

- au c* (x*, y*, t* )  = G(x*, y*, t * )  - f ?$I - 
ay*? 

(2.15 a )  

6" (x*, y*, t " )  = v"(x*, y", t * ) ,  (2.15 b )  

i$(x*, y", t " )  = 7&*, y*, t* )  

( 2 . 1 5 ~ )  

(2.15d) 

and the mean flow equations (2.8) and (2.9). The resulting equations in terms of C*, 
fc*, p*, and ?$ in (x*, y*, t * )  are identical in form to those obtained by a fixed-frame 
treatment and perturbation analysis; the same result is obtained for the interface 
boundary conditions. This indicates that the solutions of the equations for G*, E*, p*, 
and i$ in the (x*, y*, t * )  system must be identical to those for G, 6, p ,  and Tij in the 
( T ,  y, t )  system if the same forms of mean velocity profile and closure relations are used 
in obtaining the solutions. 

It can be shown (see Hsu, Hsu & Street 1977)  that the perturbation scheme in a 
fixed frame analysis is uniformly valid only when 

u+/6$ < 1 (2.16) 

where a+ = uu*/v is a non-dimensional roughness height for the wave, where u* is 
the friction velocity, and 8: = S,U,/V = Um/u, is the non-dimensional viscous sub- 
layer thickness [So = U,/(aU/ay*), = Urn v / u ~ ] .  When (2.16) is satisfied, 

~*(X*,Y* ,  t * ) l p = h  and g"(x,y, t)(,=f, 

can be taken as the same (to second order) and the wave-induced quantities measured 
in (x*, y", t * )  are related to the wave-induced quantities measured in (x, y, t )  by 
equations (2.15a, b ,  c, d ) ,  e.g., G(x, y, t )  = G(x*, y", t " )  - f +j aU/ay*, etc. Accordingly, 
the differences between the transformed wave-following frame and the fixed frame 
measurements are clear. 

When (2.16) is not satisfied, but the wave slope is still small so that g*(z*,y*,t*) 
is still meaningful while gfx, y, t )  is not, the fixed-frame analysis actually yields 
g*(x*, y*, t * )  instead of g(x, y, t )  if the results are interpreted to be given in terms of 
distance above the instantaneous water surface. [We find that our stream function 
$*, defined by G* = @*/ay* and v"* = -a$*/ax*, has a role equivalent to F(7)  in 
Benjamin (1959).] Condition (2.16) is not satisfied in a laboratory facility, in general, 
because the wave amplitude has to be maintained large enough to give a significant 
signal-to-noise ratio. For instance, in this work u* = 8.56 cm s-1, Urn = 2.4 m s-1 and 
u = 2.67 cm; thus, S$ = 28, a+ = 146, and a+/S$ = 5.24 > 1. Hence, we conclude 
that measurements in the fixed-frame cannot be complete and in general are not 
compatible with attempts to verify model predictions. 

According to (2.15d), a homogeneous closure model for i i j(x*, y*, t * )  will result in 
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an inhomogeneous closure model for F$(x*, y*, t*). For example, a quasi-laminar model 
with Pi,(%*, y*, t*) = 0 in the transformed frame gives 

a -  i"(x*,y*,,t*) = -fq-*(u;u;). 
a Y  ii  (2.17) 

If we adopt the closure relations for the mean flow used by Davis (1970), we find that, 
as H --f 00, (2.17) is identical to Davis' closure relation for Fij(x,y, t ) .  Hence, Davis' 
(1970) model is the simplest quasi-laminar model in (x*, y*, t * ) .  

The prediction by Davis (1970) was compared to fixed-frame measurements by 
Stewart (1970) and showed no consistency. Our analysis in the previous subsection 
indicates that Davis' model, which used the wave-following property of the mean 
flow suggested by Benjamin (1959) but was applied in the fixed frame, can be adequately 
tested only by comparison to the quantitiesg* measured in (x*, y*, t*). This comparison 
is made below. However, in view of the importance of the wave-induced turbulent 
Reynolds stresses, one may anticipate that a non-zero closure for Ffj(x*, y*, t*) is 
essential. 

3. Experiments 
3.1. The experimental apparatus and instrumentation 

The channel used for the experiments was described in detail by Hsu (1965) and sub- 
sequent investigators a t  Stanford (see, for example, Bole & Hsu 1969). The wind, 
water-wave research facility was designed to generate water waves by wind and/or 
by a mechanical wave generator to facilitate the experimental study of the wave 
generation problem. The test section is about 20 m long, beginning a t  the air-flow 
inlet. The distance H in the air from the mean water level to the channel roof is 
0.97 m; the water depth is about 1 m which ensures the 1 Hz mechanically generated 
water wave used here is a deep water wave. The wave length of this wave was 1-56 m 
which gives k = 4.03 m-l. The data taking station was located 13 m from the air 
inlet of the channel. 

To measure the flow in the transformed wave-following frame, the wave-follower 
system developed by Yu, Hsu & Street (1971) was modified and used as the primary 
instrument. The wave-follower system is controlled to allow one to  set the mean 
elevation accurately ( +_ 0.25 mm) and to fix the oscillation amplitude, using the 
signal output of a fixed wave-height gauge as input, such that the probes move 
vertically so y" = constant. The vertical motion range of the wave-follower is about 
15 em; thus for a 2.67 em amplitude water wave only about 9 em of the boundary 
layer can be traversed. This traverse range is approximately one third of the boundary- 
layer thickness. The vertical traverse range was extended, with the aid of a 
wave-follower elevator, to  cover the whole boundary layer. The arrangement of the 
components and the measuring probes is shown in figure 1 .  To correct for the phase 
lag of the wave-follower system the wave-height gauge was installed approximately 
4.0 em upstream of the velocity probes, which were attached to the lower end of the 
wave-follower. 

The wave-height gauge that measured the elevation of the instantaneous water 
surface, was a capacitance type (Colonel1 1966). The accuracy of the gauge calibration 
in static and dynamic tests was f 0.25 mm. 
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Wave-follower elevator 

Wave-tollower system 

Pltot-static tube  

FIGURE 1. Probe configurations. 

A Pitot-static tube was used to cross check the mean velocity obtained from hot- 
film probes and t o  calibrate them. The output from the Pitot-static tube was taken to 
a Pace differential transducer (Model P90D) which was calibrated against a micro- 
manometer, with resolution of 0.0006 cm of silicone oil (specific gravity 0.82). 

The hot-film probe used to measure the velocity fields was a TSI Model 1241-20. The 
orientation angles of the films relative to  the probe centre-line, which were measured 
with the aid of an optical comparator, are shown in figure 1. Each film was operated 
in a constant temperature mode. The hot-film probe was calibrated in situ immediately 
prior to data taking. The misalignment of the probe was determined by recalibrating 
the probe after 180" rotation about the probe axis; the misalignment was less than 1". 
The uncertainty in the hot-film probe calibration was mainly caused by the uncertainty 
in the Pitot-static tube output and was approximately 3 yo. This was confirmed by 
oscillating the hot-film probe in the free stream where the output should correlate 
closely with the oscillation velocities. No spurious errors, due for example to  mount 
resonance, were observed. 

3.2. Data acquisition and reduction 
The wave height and velocity data were taken simultaneously and recorded by a 
data acquisition-reduction system. The system consists of an HP2 IOOA computer, 
analog-to-digital converter, nine-track magnetic tape drive and peripheral input- 



Turbulent $ow over a progressive water wave 97 

output devices (Takeuchi & Mogel 1975). All the signals were zero-suppressed, ampli- 
fied and low-pass filtered at  500 Hz to fulfil the Nyquist criterion as samples were 
taken every 0.001 s for 3 min. The air and water flows were permitted to settle into 
statistical equilibrium over a 1 hour period prior to taking data. The sampled data 
were stored on digital magnetic tape. 

All data were taken at  the same mean free-stream velocity of 2.4 m s-1 and with 
mechanically-generated water waves of 1 Hz frequency and 2.67 cm amplitude. 
Velocity data were taken at 18 elevations ranging from 1.6 cm to about 39 cm above 
the interface. 

The time and phase averages given by equations (2.1) and (2.2) are the main tech- 
niques used for data reduction. The wave component # is then determined by equation 
(2.3). Because # contains all the harmonics, cross-spectral and auto-spectral analyses 
for # using i j  as a reference were performed by fast Fourier transformation (FPT) to  
determine the amplitudes and the phases of each harmonic. The resultant amplitudes 
showed that the contribution of harmonics is less than 10 % of the fundamental mode 
for all reduced quantities. Hence, a linear analysis for the wave perturbed fields is 
feasible. 

Special attention was given to the calculations of B(x*, y*, t * )  and fij(x*,y*, t * ) .  
The velocity sensors measured the velocity of a fluid element relative to the probe, 
which is not consistent with the Cartesian velocity described in the transformed co- 
ordinate system. Since the probe moves with a vertical velocity f aq/at*, we have 

( 3 . 1 ~ )  GWL(X*, y*, t*) = G(x*, y*, t*),  
aij Cm(x*, y*, t * )  = C(x*, y*, t * )  - f - 
at*, 

(3 . lb)  

where iim and Cm are the wave-induced velocities measured by the probe. To obtain 
?+j, (uiu;) was first deduced according to the relation 

(3.2) 
I t  

{UiUj) = ((Gmi + u:) (Gmj + u;)) - GmiGmj, 
- 

where GWll = GWl and GWL2 = Cm. Then u;u; was obtained by averaging (u;u;) over the 
wave period and Fij was in turn calculated from equation (2.13). 

For the raw data the time between samples is 0.001 s, yielding a frequency resolu- 
tion of 0-976 Hz for spectral estimates. This resolution is inadequate for the study 
of the effects of a 1 HI, mechanically generated wave. However, we can treat the phase- 
averaged data for a quantity # as periodic and string together enough cyclic repetitions 
of the data to create, effectively, a new and longer data set. This longer set is digitally 
low-pass filtered and then re-sampled at a prime number multiple of the original time 
increment, i.e. every 0.023 s. For a 1024 point FFT and 1 Hz waves, one needs just 
over 23 periods of wave data. The result is a frequency resolution of about 0-04 Hz 
and the 512 spectral points lie in the range 0.04 < f < 22 Hz. The low-pass digital 
filtering at  an appropriate cut-off frequency prevents aliasing error due to the re- 
sampling. The identical low-pass digital filtering and re-sampling processes were 
applied to p to eliminate the effect of phase change by the filter. The changes in the 
amplitude of # by the digital filter were also corrected from the known filter character- 
istics. The low-pass digital filter is a recursive filter given by Bendat & Piersol (1971, 
p. 297). Details of the fast Fourier transform procedure and of the spectral analysis 
can also be found in Bendat & Piersol (1971, cha. 9). 
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4. Experimental results 
4.1. Format of presentation 

The flow quantities are generally presented in profile distributions as a function of y*. 
The profiles are usually in non-dimensional form; typically Urn and U: are used to 
normalize the velocities and the Reynolds stresses, respectively, and the ordinates y* 
are normalized by k .  However, when interpretation in wall co-ordinates is required, 
the friction velocity u* and the viscous length scale V I U ,  are used for normalization. 
The wave-induced quantity fl is generally expressed as 

g(x*, y*, t*)  = &[@(y*) exp [i(kx" - wt* ) ]  + conjugate] +harmonics 

= J@(y*)J cos (kx* - wt* + 9,) +harmonics, (4.1) 

where IQ(y*)( is the amplitude and 8, is the phase lag angle of the fundamental mode. 
The phase lag is with respect to time using j j  as a reference. I n  this study, the wave 
perturbation quantity can be approximated by its fundamental mode without changing 
overall conclusions, because as noted above the harmonics are relatively weak. 

4.2.  Water-wave field and surface condition 
A typical resuIt for the phase average of the mechanicaliy generated water wave is 
shown in figure 2, together with the phase-average results of S, 6, and fij for U, = 2.4 m 
s-1 and y* = 1.6 cm. Strong correlations among j j ,  S, 5, and Fij are seen in figure 2. 
From auto-spectral analysis, the harmonics in j j  are less than 5 % of the fundamental 
mode and are negligible. Here ka = 0.107, corresponding to a = 2.67 em. 

For U ,  = 2.4 m s-l, the ripples 7' riding on the mechanically generated water waves 
are small but visible. The randomness of the ripples results in 7' = (7') = 0; however, 
the mean square? is non-zero and represents the square of mean surface roughness on 
the mechanically generated water waves. The roughness parameter zf = z,u,,/v = 4-95 
where zo = 7'2' is the mean roughness of the ripples and is approximately equal to 
0.09 cm for this study. Hence, we conclude that the surface condition is aerodynamic- 
ally smooth. 

4.3. MeanJlow fields 

( a )  Mean velocity projile. The mean horizontal velocity profile obtained in this 
experiment is typical of that  for a turbulent boundary-layer flow. There is a log- 
linear profile near the interface and a wake characteristic near the free stream. We first 
used 

-1 

U+ = k>llny++C, (4.2) 

where U+ = U / u ,  and y+ = y*u,/v are the wall co-ordinates and k,  is von KBrm&n's 
constant (assumed to be 0.40), to fit the lower portion of the mean velocity profile. 
The friction velocity u, found is approximately 30 yo greater than that calculated 
from direct measurement, i.e. from u i  = -u'v'. The result8 for u* also depend on 
the number of points in the linear portion of the profile used for curve-fitting, the 
variation being as large as 15 %. Furthermore, all the y+ values for the data points 
are greater than 100, which is contrary to  the argument that the log-linear profile 
exists only for 30 < y+ < 70. Hence, the simple log-linear curve-fit was discarded in 
favour of the better results produced by the use of the profile of the 'law of the wake' 

- 
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(Coles 1956), which can be written as 

where TI' is the wake function and @ is the wake parameter. The wake function It' 
can be approximated by (Hinze 1975) 

Equation (4.3) can be written as 
W ( p ' / ( y )  = 1 __ cos (ny*/6). (1.4) 

(4.5) 
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Profile parameters (results of curve fitting) Direct 
A measurement Difference 7- v 

Au* U, (cm 9-1) 6 (cm) w, C 6f u* (cms-1) u* (cm s-1) - x 100 yo 
u* 

239.4 23.50 0.3240 8.619 1267 8.520 8.561 0.48 

TABLE 1. Parameters for mean velocity profiles and comparisons of the friction velocity. For 
flow over a mechanically-generated water-wave of frequency 1 Hz and amplitude 2.67 cm; the 
wave celerity c = 1.56 m s-I and the wave slope ka= 0.107. Windlwave coupling parameter: 
c/u*  = 18.2, U,/c = 1-54. 

1 I I I I 1 1 1 1  I I I I I I I I I  I I I I 1 1 1 1 1  I I I  

30 

I 1 I I 1 1 1 1 1  I I I I I I I I I  I I I I 1 1 1 1 1  I I l l  
10" 2 5 10' 2 5 102 2 5 103 2 5 

Y +  
FIGURE 3. Mean horizontal velocity profiles in wall co-ordinates; the profile parameters U,, u* 

6+ and W, are given in table 1. 0, experimental results; -, curve-fit results. 

which asymptotically matches (4.2) as yf -+ 0 with the matching condition 

where uz = U J u ,  and 6+ = 6u,/v. Note that equation (4.5) applies in the region 
from yf = 30 to the free stream. 

Figure 3 shows the comparison of the data t o  the results of curve-fitting by the 
least-square method. The agreements are excellent. The profile parameters are given 
in table I. The comparison of u, between the results of curve-fitting and of direct 
measurement gives a difference of 0.48 yo as shown in table 1. Note that use of the 
law of the wake is very much better than use of the normally used log-linear profile 
technique. The parameters U,/c, u,/U,, c /u+ ,  and U,&/v which characterize the 
mean flow were 1.54, 0.0359, 18.2, and 35700 respectively. 

(b) Mean Reynolds stresses and turbulent intensity. Figure 4 shows the distributions 
of the turbulent Reynolds stresses ux.. The typical behaviour of these distributions 
is the same as those measured in flow over a flat plate by Klebanoff (1955) (see also 
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Schlichting 1968). An almost constant shear layer is observed in the lower portion of 
the -= profile. The turbulent shear stress outside the viscous sublayer is 

- 
- u ' v ' / U i  = 2: 0.0013. 

For 8 typical turbulent boundary layer flow over smooth flat plate, we find from 
figure 21.7 in Schlichting (1968, p. 61 1) that -U'.'/U: = 0.001 7 for 

Re, = Umx/v N 2-0 x I06 

based on the fetch of the data-taking station. The lower value in the shear stress for 
the interface flow may be due to the influence of the developing drift current a t  the 
interface which results in a partial release of the shear stress (see additional discussion 
in 5 5 ) .  

4.4. Wave perturbation Jields 
( a )  Wave perturbation velocities. A typical result for G and B obtained by phase 

averaging is shown in figure 2. The deviation of $I and 6 from the nearly sinusoidal 
$ as indicated suggests a relatively higher nonlinearity in the wave-induced flow. 
This nonlinear effect may result from the nonlinear advection of the air flow. How- 
ever, the spectral analysis of S and Z indicates that  the magnitudes of the harmonics 
are still less than I0 yo of those of the fundamental modes and are negligible. 

Figures 5 and 6 show the amplitude and the phase lag versus Icy* for S and B, 
respectively. Near the interface, but outside the viscous sublayer, the magnitude of 

is nearly one order greater than that of 191 ; they tend to be of the same order away 
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from the interface. This suggests that, close to the interface where the mean flow 
vorticity and the turbulent intensity are high, the wave perturbation field strongly 
depends on the shear flow effect and the turbulent mixing. Away from the interface, 
the wave perturbation field behaves similar to that in an inviscid flow with constant 
mean velocity. Hence, the exponential decay character is predominant in the free 
stream. This is also evidenced by the phase relation between elli and O,, that is, near 
the free stream, there is an almost constant 90" difference and, near the interface, a 
180" difference is observed. 

If the drift current at the interface is assumed to be 3 yo of U, (Wu i968), the inter- 
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face boundary condition gives ISI/Um x 102 = 6.67 and 0, = 270" at y* = 0. The 
measured sharp increase in 181 and the measured phase 0, approaching 270" as y* --+ 0, 
as shown in figure 6 ,  seem to verify the interface boundary condition. 

( b )  Wave-associated Reynolds stress. The distribution of -% is shown in figure 7. 
When the harmonic modes of .ii and v" are relatively weak compared to the fundamental 
mode, the wave-associated Reynolds stress - %can be approximated by 

- +la1 pi cos (e, - eg). 
This approximation by the fundamental mode (not shown in figure 7)  differs by less 
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*- 

than 5 yo from the measured results. The interesting features in - ud are the high 
positive value comparable to -u'v' near the interface, the drastic decrease to a 
negative minimum as y* increases and the recovery to a zero value in the free stream. 
The variation in -% is cont,inuous and is in contrast to the prediction based on the 
inviscid theory of Miles (1  957).  Kendall ( 1  970) observed similar behaviour; however, 

- 
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his measurements were not close enough to the wave surface to obtain the positive 
value of - %. 

The wave-associated Reynolds stress is significant not only in transferring momen- 
tum and energy from wind to waves in the wave-generation process, but also in 
transferring energy from the mean flow to the wave perturbation field. The rate of 
energy transfer from the mean flow to the wave perturbation field is given by 

-uv"aupy*. 
Because arJ/ay* > 0 in the boundary layer as shown in figure 3, the energy transfer 
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rate is negative (from the wave perturbation field to  the mean flow) in the upper 
portion of the boundary layer (ky* > 0.18) and is positive (from the mean flow to the 
wave perturbation field) in the lower portion (0 < Icy* < 0.18) (see figure 8). The 
energy production - u% aUlay* is confined to the boundary layer and is concentrated 
near the interface. 

(c )  Wave-induced turbulent Reynolds stresses. The phase-average results for i i j  at 
y* = 1.6 ern are shown in figure 2. The oscillations ill and i,, are coherent and almost 
in phase. Thus, the oscillatory turbulent intensity q: = ill + F,, is also almost in phase 
with ill and i,,. Turbulence is enhanced on the leeward side of $he water wave and 
is reduced on the windward side. The oscillatory shear stress PI, shown in figure 2 
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indicates that the turbulent Reynolds stress - (u'v') is relatively high on the leeward 
side and relatively low on the windward side of the mechanically generated water 
wave. The consistency in the variations of P,, and ijt is expected because higher turbu- 
lent intensity usually results in higher turbulent Reynolds stress, although their peaks 
are not necessarily matched. 

The distributions of amplitudes Ifijl and phases OTij are given in figures 9, 10 and 11. 
The amplitudes l P i j l  are large near the interface and decrease as y* increases. They all 
decrease to a 'minimum' a t  ky* = 0.6 and finally tend to zero in the free stream. We 
interpret the value of the 'minimum' as zero because there is a phase jump of 180' 
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a t  ky* = 0.6 in the OFij profiles. The phase jump of 180" means that the oscillatory 
turbulent Reynolds stresses just above ky* = 0.6 act in the opposite direction to  
those stresses just below. In  comparison among the phase distributions of /3+, we 
find PI1,  P,,, and then @: have almost the same phase distribution. However, i,, has 
an approximately constant phase difference of 90" compared to Pll and Pl, throughout 
the boundary layer. We also find Q lags ill and P,, by approximately 90" €or ky* < 0.6. 
This suggests the existence of an eddy-viscosity relation between Qi and Pi?. An eddy- 
viscosity closure has been constructed based on these experimental results (see Hsu 
et al. 1977) and is now under test. The results will be reported in a subsequent paper. 

Gent & Taylor (1976) used an isotropic eddy viscosity model to  calculate the inter- 
face flow in a curvilinear co-ordinate system under finite-amplitude wave conditions. 
The ranges of c/u* and ka  in their study are 4 d c / u 9  6 20 and 0.01 6 ka  6 0.314 
which cover those of our experiment. They predicted that the amplitudes of the 
induced turbulent Reynolds stresses would have double-peak profiles and that the 
phase distributions of the induced turbulent Reynolds stresses shift 180" in the down- 
stream direction through the boundary layer. However, their model also predicted 
that near the interface the maximum turbulent intensity and the maximuri turbulent 
shear stress occur windward of (or behind) the wave crests. For instance, we find from 
their table 3 that the maximum stress occurs 148" behind the wave crest when 
c / u ,  = 18 and ka  = 0.157. This is contrary to our observation which gives the maxi- 
mum stress at 80" forward of the wave crest. The phase jump of 180" a t  ky* = 0.6 in 
Orij again was not predicted by their model. The discrepancy may be due to the 
difference in the surface condition; the surface they assumed is rough while that 
which we observed is aerodynamically smooth. Neglecting the viscous stress a t  
y* = 0 in their model requires that the eddy viscosity k,z,u, be considerably larger 
than v say k,z,u,/v 2 10. Consequently, their predictions for In kx, = - 8 are only 
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applicable if ( w / 2 7 ~ ) ~  6 0.32 (u,/c). This condition is apparently not satisfied by our 
experiment. 

Consideration is now given to  the energy exchange in the wave-turbulence inter- 
action. The energy drain from the wave perturbation field t o  the background turbulent 
field is given by - fij ad,/axT. The profiles of Itliil, BEi, lPijl and BFij shown in figures 5, 
6,9,10 and 11 were used for calculating the energy drain. The results of the calculation 
are shown in figure 12. The horizontal stress-strain correlation - F12 a.ii/ay* contributes 
dominantly to the energy drain near the interface. A drastic change in the energy drain 
is observed near the interface. The net energy drain indicated by the line segments in 
figure 12 shows that for ky" < 0.68 the wave-induced turbulent Reynolds stresses 
convert the kinetic energy of the wave perturbation into background turbulence. For 
ky* > 0.68 the energy is transferred from the turbulence to the wave perturbation. 
The amount of the energy drawn from the wave perturbation field to  the turbulence 
in the lower portion of the boundary layer is much larger than the amount of the 
energy given to the wave perturbation field from the turbulence near the free stream. 

Liu & Merkine (1976) studied the interactions between a wave-like large-scale 
structure and fine-grained turbulence in a free shear flow. Their prediction of the 
wave-turbulence energy transfer (figure 3 in their paper) resembles our observations. 
They showed that the horizontal stress-strain correlation is predominant. However, 
their predicted total transfer is uniformly from the wave field (large-scale) to the 
turbulent field (fine-grained turbulence). Our results are related to a boundary-layer 
flow where there are interactions between the large-scale turbulence and a wave; 
this may cause the difference between our results and their predictions. I n  general, 
however, our observations and their predictions seem to be consistent. 

5. Discussion 
Discussions were given in $ 4  for specific flow quantities. I n  this section we will 

discuss the general aspects of our measured results and use them to comment on some 
controversies between the previous hypotheses and measured results concerning inter- 
face flow structure and wave-generation theory. 

5.1. Mean pow structure 
The main controversy about the mean flow is: (a) Is the mean flow over the wave, to 
the first approximation, similar to that of a boundary layer over curved surfaces, so 
that it can be measured as a function of y - e-kVj, as pointed out by Benjamin (1959), 
or ( b )  is the flow representable as fixed profiles in the Cartesian co-ordinate system? 
From this study in which measurements were made in y* co-ordinates, the mean 
velocity has a wake log-linear profile which holds in the vicinity of the interface (and 
in particular in that8 section below the wave crests). The measured turbulent Ke~-tiolds 
stresses also have a structure similar to that observed by others in flat, solid- 
boundary channels. This suggests that the interface flow characteristics are dependent 
on the instantaneous height above the water surface consistent with Benjamin's 
suggestion and are not easily represented in terms of the height above the mean water 
level. Stewart (1970) measured the velocity profiles over smooth water surfaces and 
over a 1.96 Hz mechanically generated water wave under a low wind condition 
(similar to this study). He also confirmed the wave-following propertly of the mean 
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profile in the Benjamin's sense. Hence, describing the interface flow in the transformed 
co-ordinate system is the appropriate approach. 

Let us now give attention to the mean velocity profile parameter C. The value of 
C found in table 1 is 8.62. Stewart ( 1  970) found C = 7.2 for smooth flat water surface 
and C = 3.7 for mechanically generated water waves. He stated that the lower value 
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of C = 3.7 resulted from the roughness created by the mechanically generated water 
waves and concluded that ‘the velocity profile over water waves is quantitatively 
similar to the profile over a rough plate’. We disagree! From the wave-following 
property of the mean profiles, the surface roughness should be that produced by the 
ripples riding on the generated water wave. The ripple roughness’ in this study and 
also in Stewart’s corresponded to an aerodynamically smooth surface. If the generated 
water waves are regarded as surface roughness, we also expect that the C value should 
continuously decrease as the wind speed is increased when the wave amplitude is 
kept constant because the relative roughness given by a+ = au,/v is larger a t  higher 
wind speed. This was not observed by Stewart. 

The lower value of C = 3.7 in Stewart’s results was a consequence of his fixed- 
probe measurements. The mean velocity measured in the fixed frame is smaller than 
that measured in the transformed frame and the difference of the two-frame measure- 
ments increases as one approaches the interface. This gives a considerably lower C 
€or the fixed-frame result. 

On the other hand, our 8.62 and Stewart’s 7.2 for C are considerably higher than 
that generally accepted for flow over a smooth solid wall. This may be due to the 
existence of the drift current a t  the interface. The drift current releases a portion 
of the turbulent shear stress to give a lower value of u, for interface flows than that 
for smooth, solid wall (flat or wavy) flows. Accordingly, curve-fitting by profile method 
results in a lower slope u J k ,  and a higher intercept C. Taking the surface drift current 
into account, we find 

where Co is the C value for flow over smooth wall and AC is the change in C due to the 
shear stress relaxation (see Hsu et al. 1977). Assuming U,/U, = 0.03, we find C = 6.91 
if C O  = 5.0 (Hussain & Reynolds 1970) and C = 8.11 if Co = 6.2 (Coles 1954). Consider- 
ing the scatter in Co, our result for C and Stewart’s 7.2 are not inconsistent with the 
stress relief hypothesis. 

5.2. Comparison of wave perturbation $eld to$xed-frame results 
As stated in 5 2, measurements of di(x, y, t )  in the fixed frame should be comparable to 
dT(x*,y*,t*) if condition (2.16) is satisfied, i.e. if the wave amplitude is much less 
than the viscous sublayer thickness. The amplitudes and the phases of d* and ij* 
based on (2.15a, b )  were calculated and are shown in figures 13(a, b). The results are 
compared to the fixed probe measurements of Stewart (1970) for his case of U, = 120 
cm s-1 (Um/c = 1.51, ka = 0.10 and y: = ycu*/v N 40, where U(yJ = c). No agree- 
ment is found and the discrepancy may arise because condition (2.16) is not satisfied. 

The model predictions by Davis (1970), which Stewart compared to his data, are 
also shown in figures 13(a, b )  (only Stewart’s case for 6 = 15.0 and y = 3.61). Two 
models were calculated by Davis: model A is the quasi-laminar model with 

dij(X, y, t )  = 0 

and model B is the closure model proposed by Davis (1970) using Benjamin’s wave- 
following profile concepts (quasi-laminar model in the transformed co-ordinate sys- 
tem). While Stewart found his data compared better to the prediction of model B, 
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FIGURE 14. Distribution of the wave-associated Reynolds stress - G*B* and its comparison t o  the 
prediction by Townsend (1972). 0, this experiment, G/u, = 18.2; -, Townsend, C/u, = 16. 

we find model A ,  a model in which the induced-turbulent-Reynolds stresses are not 
zero in the transformed co-ordinate system, is in better agreement with our data. 
However, the agreement is only qualitative. The inconsistency in this comparison 
also raises the following question: Which set of data, Ci(x, y, t )  or .iit(x*, y*, t* ) ,  is 
more proper for comparison to the results of a fixed frame closure model! Although 
we have shown that C: may be more suitable, further measurements both in (x, y, t )  
and (x*, y*, t*) and more comparisons to realistic closure models are required. 

normalized by - u'v'(ka)2 
is plotted in figure 14. The predicted result by Townsend (1972) for c/u*  = 16 is also 
included. They agree in the trend of the variation but not in the magnitude. Near the 
interface, the measured values are considerably higher than the predicted ones. 
However, i t  can be argued that the kinetic energy closure model of Townsend has to 
some degree described correctly the wave perturbed interface flow fields. The improve- 
ment on this model by Gent & Taylor (1976) gives better predictions on wave growth 
rate and supports this argument. 

The transformed wave-associated Reynolds stress - 

5.3. Momentum transfer 
The momentum transfer across the interface is produced by viscous, pressure and 
turbulent forces acting a t  the interface. If one neglects the viscous stress outside the 
viscous sublayer, the total momentum transfer is given by 

-~ 
( - pu'v' + p aqpx +pi,, aq/alc)y*,~o, 

- 
where - - p ~ ' v ' ) ~ ~ = ~ ~  is the momentum supported by the surface drift current and 

- - -  
(@aq/ax +pi,,afj/a~),,=,~ = P( - . i i~+f ja~,2/af-) ,*=80 ( 5 . 2 )  
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is the momentum supported by the waves. Our results for Pii show that the turbulent 
transfers are one order smaller than -p%ly*=6D; hence, to the first order, (5.2) reduces 
to the inviscid quasi-laminar expression, 

- -  
and the total momentum transfer is given by -p(u‘v‘ +.ii6),,=60. 

The value of - 61 ,, = 6u/ U: 
obtained by extrapolating the profiles of -u% given in figure 5.11 of Hsu et al. (1977) 
is 9.6 x it is probable that the extrapolation produces an error of less than 10 yo 
because the data for -% form a fairly smooth curvet. Thus, the ratio of momentum 
flux to  the wave field to  the total momentum flux across the interface, as given by 

I n  3 4.3 ( b ) ,  we showed that - m[ ,* +/ U: = 1.3 x 

is found to be 0.42 for this experiment. 

5.4. The structure of the critical layer 
In  the quasi-laminar theory, the critical layer is produced by viscous effects which 
smooth the discontinuity a t  y = yc which arises from the inviscid assumption. How 
the energy and momentum are exchanged by fluid elements when they pass across 
the viscous critical layer was well interpreted by Lighthill (1962). The mean stream- 
lines observed in a frame moving with wave celerity exhibit the so-called ‘cat’s-eye’ 
pattern near the critical height. The cat’s-eye of Lighthill is located right above the 
wave crest and the closed loop circulation in the cat’s-eye is symmetrical. However, 
Stewart (1974) pointed out that, if diffusion of vorticity is assumed, the closed loop 
circulation must be asymmetrical. Since the mean velocity profile follows the wave 
form, the critical layer is located at  y* = y:, where U(y,*) = c. A sketch of the mean 
streamline pattern for an undulating asymmetrical critical layer can be found in 
figure 6 ( c )  of Stewart (1974). 

Norris & Reynolds (1975) predicted the cat’s-eye patterns in a transformed co- 
ordinate system. The distinct feature of their predictions is that the cat’s-eye is 
forced by the mean flow downwind from the wave crest, viz. on the lee-ward side for 
a quasi-laminar model and at  the wave trough for both turbulent kinetic energy and 
eddy viscosity models. However, their cat’s-eye patterns are confined in a thin layer 
in the proximity of the interface. The possibility that the cat’s-eye may be located in 
the trough was first suggested by Stewart (1967) from the flow separation over a cavity 
in a wall. A cat’s-eye pattern over breaking waves was also proposed by Banner & 
Melville (1976) based on their visual study. The cat’s-eye patterns for breaking waves 
correspond to air flow separation; there are stagnation points at the interface and 
the ‘cat’s-eyes’ are directly attached to the interface. A discussion on separated and 
unseparated flows and their associated cat’s-eye patterns was also given by Gent & 
Taylor (1977). 

From our measured values of U ,  .ii and 6, we are able to construct a cat’s-eye pattern 
for our flow. The result is shown in figure 15 where the dotted line indicates the 

t The profile of - GZ shown here in figure 7 represents only one of the four profiles given in Hsu 
- 

et al. (1977). 
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FIGURE 15. Sketch of streamline pattern as observed in the frame moving 
with the wmve speed. 

locations of 6 = 0 such that the tangent to the streamlines is horizontal. The loca- 
tions where the closed loop circulations reverse the flow direction were determined 
from U + .ii - c = 0. As shown in figure 15, the ‘ cat’s-eye’ is located in the wave trough 
and is considerably thicker than the predictions by Norris & Reynolds (1975). Our 
cat’s-eye pattern resembles that predicted by Gent & Taylor (1977). 

The thicker critical layer may be the consequence of turbulent mixing which takes 
over the role of the viscous diffusion in smoothing the discontinuity resulting from the 
inviscid analysis. The critical height of the viscous critical layer is shifted up and down 
according to U + Q + u’ - c = 0. The range of the instantaneous critical height shifts 
is usually larger than the thickness of the viscous critical layer. Furthermore, as a 
result of mixing the structure of the local viscous critical layer may be strongly 
changed due to the vertical transport by B + v’. The statistically averaged result is 
then a turbulently mixed critical layer. Although the critical height may still occur 
most probably a t  yz, the effectire mean critical height ?jz of the turbulently mixed 
critical layer is different from yz because the probabilistic distribution of the instan- 
taneous critical height is expected to be asymmetrical in the vertical direction. i j z  
is higher than y; if yz is located at  the lower edge of the turbulent boundary layer and 
vice versa. The mean velocity profile shown in figure 3 gives y-k = 46.7 when 

U+ = C+ = 18.2. 

From the prediction of Davis’ model A ,  the viscous critical layer ranges approximately 
from y+ = 30-60. On the other hand, the continuous phase shift in O,, and S,, indicates 
the turbulently mixed critical layer ranges from y+ = 30 to 700. Because the quasi- 
laminar model (model A )  predicted a minimum value for 10*1 a t  y;, i t  is plausible to  
assume that the effective critical height is located where the measured la*/ for turbulent 
boundary layer flow is a minimum. From figure 13, the effective critical height is 
located approximately a t  ?j$ = 350. The critical layer is broadened by turbulent 
mixing as pointed out by Lighthill (1962). As a result, the Reynolds stress - .ii*c* 
varies continuously over the entire boundary layer, and one does not observe the 
sharp change a t  yz predicted by inviscid analysis. 

It is also expected that the closed loop circulation will be deeper for higher wave 
amplitude hecause ii is as effect>ive as u’ in shifting the critical height. This effect of 

- 
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wave amplitude on the cat's-eye pattern was studied by Gent & Taylor (1977). 
Their numerical model produced a thicker critical layer for larger wave amplitude. 

6. Conclusions 
A set of experiments were run in a large laboratory facility with a turbulent wind 

blowing over a 1 Hz, small-amplitude, mechanically generated water wave. Our 
analysis of the data in the context of several theoretical constructs suggests the 
following : 

(1) The mean velocity profile is basically log-linear. The turbulent shear stress 
- p a  is partially released by the existence of the drift current a t  the interface and 
by the wave-propagation behaviour. As a result, the value of u* is lower than and the 
value of C is higher than those measured for turbulent flows over a flat plate. 

(2) The mean flow near the interface appears to follow the wave form but that in 
the free stream does not; hence, describing the interface flow in the transformed co- 
ordinate system is clearly an appropriate approach. 

(3) At the wind speed of this study (2-4 m s-l) the roughness produced by ripples 
is not large enough to interfere with the wind field. Close examination of the mean flow 
indicates that the mechanically generated water wave should not be considered as 
portion of the surface roughness. Thus, the surface condition is aerodynamically 
smooth. 

(4) In  this experiment, the wave-induced motion in the air near the free stream is 
irrotational. I n  the boundary layer, the motion is rotational with strong production 
of the wave-associated Reynolds stress -p%. Most of --PUT is produced in the 
proximity of the interface. A phase jump of 180" was observed for the induced turbu- 
lent Reynolds stresses Pij at ky* = 0.6. 

(5) The wave-induced turbulent Reynolds stresses P i j  make a negligible contribution 
( < 10 % of the wave-associated Reynolds stress) to the momentum transfer a t  the 
interface. Thus, the ratio of momentum flux to the wave field to the total momentum 
flux across the interface is given by the ratio of uTlyt=bo to ( u ' ~ ' + G i j ) ~ ~ = ~ ~  and is 
about 0.42. 

- -  
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